STEM: Bringing Engineering into the Science Classroom

AUTHOR: Shawna Wiebusch, Secondary Science Education Specialist

Science courses are often grouped into the category of STEM, including in the STEM endorsement for graduation from Texas public schools. Science teachers attest to the value of math in the field of science and many have embraced the accuracy, precision, and increased student engagement that technology brings to the classroom. However, science teachers often hesitate when asked how they incorporate engineering into their classrooms. While our content based TEKS get most of the focus, our process standards are often an afterthought in planning. Through the lens of engineering design, teachers can integrate the teaching of process standards and content standards.

The engineering design process consists of a series of steps that can be thought of as a cycle. Depending on your source, there are approximately 7 steps. From the Teach Engineering website the steps are as follows:

1) Ask – Identify the need and constraints

2) Research the problem

3) Imagine: Develop possible solutions

4) Plan: Select a Promising solution

5) Create: Build a prototype

6) Test and Evaluate prototype

7) Improve: Redesign as needed

In a science classroom, these steps lead students to use the content they are expected to learn to solve a problem. A physics teacher might ask their students to design and model a house that uses series and parallel circuits to light 4 rooms with a specific current and voltage. A biology teacher might ask their students to determine what barriers a cell would have to overcome in order to duplicate itself successfully and come up with potential solutions to those barriers (and in the process, teach the concept of mitosis). An 8th grade teacher might ask students to determine the causes of and potential solutions for the Great Pacific Garbage Patch. In each of the examples listed above, students should also communicate their designs to their peers and use feedback in order to improve their initial models.

So now that you’ve seen a few examples, let’s explore exactly how the science process TEKS fit into the engineering design process.

In elementary school, students are expected to propose solutions to problems in Kindergarten through third grade (K.3A, 1.3A, 2.3A, 3.2A). This is the foundation of the engineering process and needs to be emphasized in the younger grades so that those skills are developed and practiced throughout a child’s education.

At every grade level, at least one student expectation touches on the use of models. In 7th grade, students are expected to “use models to represent aspects of the natural world…” (7.3b) and “identify advantages and disadvantages of models such as size, scale, properties, and materials” (7.3c). In the engineering design process, prototypes are the models. Students can use models to test out their ideas and explain them to other students and to the teacher. The important part of this is that the students are making and using the models more than the teachers.

At all grade levels, students are expected to “communicate valid results”. From third grade on, they are expected to “critique scientific explanations”. In Engineering Design, this falls under Test and Evaluate the prototype. Part of the evaluation comes from peer review. Students need the opportunity to bounce their ideas off of each other before being graded on them. The peer review process gives students that chance. Not only will they come away with ideas on how to improve their own models and ideas, but they will have practice in the art of constructive criticism and analyzing the work of others.

These are just a few places where the Science process standards overlap with principles behind Engineering Design. Engineering doesn’t have to be its own unit. It can be easily embedded in the work we already do with students and will give them opportunities to take ownership of their own learning.

References:

Engineering Design Process. (n.d.). Retrieved April 07, 2016, from https://www.teachengineering.org/engrdesignprocess.php

 


Comments are closed.